Inversion formulas for the spherical Radon transform and the generalized cosine transform
نویسندگان
چکیده
منابع مشابه
Inversion algorithms for the spherical Radon and cosine transform
We consider two integral transforms which are frequently used in integral geometry and related fields, namely the cosine and the spherical Radon transform. Fast algorithms are developed which invert the respective transforms in a numerically stable way. So far, only theoretical inversion formulas or algorithms for atomic measures have been derived, which are not so important for applications. W...
متن کاملInversion formulas for the broken-ray Radon transform
The inverse transport problem consists of recovering the spatially varying absorption and scattering coefficients of the interior of a highly scattering medium from measurements taken on its boundary [2]. The problem has been widely studied in the context of optical tomography (OT)—a biomedical imaging modality that makes use of multiply-scattered light to visualize structural variations in the...
متن کاملExplicit inversion formulae for the spherical mean Radon transform
Abstract We derive explicit formulae for the reconstruction of a function from its integrals over a family of spheres, or for the inversion of the spherical mean Radon transform. Such formulae are important for problems of thermoand photo-acoustic tomography. A closed-form inversion formula of a filtrationbackprojection type is found for the case when the centres of the integration spheres lie ...
متن کاملIntegration formulas for the conditional transform involving the first variation
In this paper, we show that the conditional transform with respect to the Gaussian process involving the first variation can be expressed in terms of the conditional transform without the first variation. We then use this result to obtain various integration formulas involving the conditional $diamond$-product and the first variation.
متن کاملRadon Transform Inversion using the Shearlet Representation
The inversion of the Radon transform is a classical ill-posed inverse problem where some method of regularization must be applied in order to accurately recover the objects of interest from the observable data. A well-known consequence of the traditional regularization methods is that some important features to be recovered are lost, as evident in imaging applications where the regularized reco...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Applied Mathematics
سال: 2002
ISSN: 0196-8858
DOI: 10.1016/s0196-8858(02)00028-3